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LIPSCHITZ PROPERTIES OF SOLUTION

IN MATHEMATICAL PROGRAMMING e

by

Bernard Cornet and Guy Laroque

1. Introduction

Let U be an open subset of R k , V an open subset of It

f" gi- i = l,...m, be mappings from U x V to P and C be a

nonempty closed convex subset of 9. For p = (Pi), g - (gi) in
m

3E, we denote by <p,q> = [ piqi the scalar product of le and
i=l

I IPI -pq> the Euclidean norm. For a fixed a in V, we consider

the following nonlinear progrmming problem:

Find a local minimum of f(x,a)

subject to g(x,a) E C

and x 4 U,

where g(x,a) = (g1(x,a),...,gm(Xa)) and x is the variable of the

problem.

Assume that the mappings f and g i l,...,m are differentiable

with respect to the first variable. We denote by Df(x,a), Dgi(x,a),

i = 1,... m the gradient with respect to x. In this paper, we also

consider the following "generalized equation" or "Variational inequality"

in the unknowns x and 1, whach is a necessary condition satisfied by

an solution of (1.1) under a constraint qualification assumption:

0 This research was sponsored by Office of Naval Research Contract
N00014-79-C-0685 at the Institute for Mathematical Studies in the dea
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. Df(x,a) + X iDgi(x'1) = 0

(1.2) in

I X E N(C,g(x,c0)

where x = (x i ) is a vector of P, and N(C,p) denotes the normal

cone to C at p:

{Xp)R I <),p>-> <X,p> for all q in C) if pE C

N(C,p)=

r~if p fC

In the particular case of equality and/or inequality constraints,

i.e., C = {O1l x +In2, m mI + m2 , the system (1.2) reduces exactly

to the Kuhn-Tucker necessary conditions:

inDf(x,G,) + ,iDgi(x~a) = o

(1.3) 0xa) = 0, i =1. 1

L gi(x 'C) > , Ai - O Yi(x,a) " 0 , i = I +l...m

- In this paper, we are concerned with the behaviour of the solutions

of problems .., (T. -1.4 and also with the Lipschitzian dependence

*of the set of solutions with respect to the parameter a. The paper

is organized as follows. T . .a2,-e st.the main theorems of

the paperA  Sufficient conditions are given to have () local uniqueness

* of solutionsnf (1-1 ) and (1 _ ) . 3.*band (it) Lipschitzian dependence

of the solution with respect to the parameter q. The proofs of the

the theorems are given.ia-SetieI , .,nj k.
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>L- The main tool, in this analysis, is an implicit function theorem

for Lipschitzian mappings due to Clarke (see also Hiriart-

Urrut [97.9 Y > The main idea is to write the generalized equation

as a system of Lipschitzian mapping, to which Clarke's

implicit function theorem can be applied. The notion of generalized

derivative of the projection mapping on a convex are of particular use.

We end the introduction by indicating briefly the link between

this paper and others written previously. The standard implicit-

function theorem was used by Fiacco-McCormick (1968], Fiacco (1976]

and Robinson [1974 to analyse the sensitivity of perturbed nonlinear

programming problems under stronger assumptions than those used in

this paper. A general implicit function theorem has been proved by

Robinson [19803 for "generalized equation". Applications are given

by him to the sensitivity analysis in the case of equality and/or

inequality constraints. This corresponds essentially to the results

obtained on equation (1.3). The present paper, which generalizes a

previous result of the authors (ses also Cornet [1981]) in the case of

equality and/or inequality constraints, uses a different technique than

the papers quoted above. Another approach for this problem in the

convex case is due to Aubin [1981], who uses a different version of the

implicit function theorem for convex processes. His result can be

derived from ours. Finally we mention the work of Levitin [19751, who

has made an analysis of the Lipschitz dependence of the solution of a

mathematical programming problem without the use of implicit function theorem.



2. Statement of the Theorems

We posit the following assumption, which describes the general

framework of the paper:

Assumption (A.1):

(i) U is an open subset of 3k, V an open subset of :R,

C a nonempty closed subset of 3F.

(ii) For all a in V, the mappings f(.,a): U +,JRm and

*9 (-,a): U -) JR, i = l,...,m are twice continuously differentiable.

(iii) The mappings gi(.,): U x V ) IR, Dgi(e,.): U x V -- " ,R

i = l,...,m and Df(.,-): U x V -- Rk are Lipschitzian.

Here, and in the following, we denote by D the operator of

differentiation with respect to the first variable x. Without risk

of confusion, Df(x,a) will denote, according to the context, either

the linear mapping from 1k to 3R or a vector of IRk. Similarly,

D 2f(x,a) will denote either the linear mapping from 3h into 3H,

or the matrix of second derivatives of f.

Let (i,;,T) in U x V x Fm. We introduce the two following

assumptions:

Assumption (A.2): The vectors Dgi(xc) i = l,...,m are

linearly independent.

Asumption (A.3): For all h in Rk h 0, such that

<Df(x,),h> = 0, then

2; m 2

f<(D (x,a) + D g (x,a))h,h> > 0<C. iml

1 .. " ..
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The main theorem of the paper deals with the solution of the

system (1.2) when the parameter 47 is slightly perturbed:

Theorem 2.1: Under Assumption (A.1), let (i,X) in U x flk

satisfy the system of equations (1.2) for a = in V. Assume

furthermore that (x,c, ) satisfy (A.2) and (A.3).

Then there exist open neighborhoods U1  of x in U, V1 of

in V, W1 of K in e, and mappings x('): V, UI , X(-): V1  W1

such that:

i) the mappings x(-) and x(.) are Lipschitzian;

(ii) x() = i. (9) = T;

(iii) for all a in VI , (x(c),A(c)) is the unique solution in

U1 x W1 of equation (1.2) at a.

In the case of equality and/or inequality constraints, we are

able to weaken assumptions (A.2) and (A.3), getting the strong order

conditions of Robinson ([1980], pp. 54-55).

As before, let (x,Zi,T) in U x V x UP1.

Assumption (A.2 bis): The vectors Dgi(xa) for all i l

such that gi(i,3) = 0 are linearly independent.

Assumption (A.3 bis): For all h in PRk, h 0 0, such that

• ~~~<Dgi(i,3),h> - 0 i-1..-

< iDg (i,;),h> - 0 for all i m l +

such that gi(x,) - 0



Then,
i 2 m

<(D 2f + [ XiD 2gi(x,M)h,h> > 0

i-i

Note that (A.3) is more restrictive than (A.3 bis), when the
m

first order condition Df(x,O-) + X XiDgi(x,a) = 0 holds. Note also that
i=l

the constraints bearing on h for i mI + l,...,m are not restrictive

when )i = 0.

Theorem 2.2: Under Assumption (A.1), let (, ) in U x JRk

satisfy the system of equations (1.3) for e = in V. Assume

furthermore that (x,cX) satisfy (A.2 bis) and (A.3 bis).

Then there exist open neighborhoods UI  of x in U, V1  of 1

in V, W1  of A in RP, and mappings x('): V1 + U1 , X(): V, w1

- such that

(i) the mappings x(.) and L(.) are Lipschitzian;

(iii) for all a in VI, (x(c),A(c)) is the unique solution

in U x W of equation (1.3) at oL

Finally, we have to come back to the solution of the initial

problem (1.1).

Corollary 2.3: Let x in U be a solution of (1.1) at m

* in V. Assume that the second derivatives D2f(xc) and D2 gi(xCI),

(i = l,...,m), are continuous at (

I



Pi Then, under the assumptions of Theorem 2.2 (respectively 2.2 in the

case of equality and/or inequality constraints), there exist open neighbor-

hoods U2 of x in UI, V2 of a in VI  such that the mapping

x('): V1 1 UI  defined in Theorem 2.1 (respectively 2.2), satisfies

the following property:

For all a in V2 , x(a) is the unique local minimum on U2

of problem (1.1) at a.

3. Proofs

The idea behind the proof of Theorem 2.1 is to write the system

* .- (1.2), i.e., the first order necessary conditions, as a system of

equations O(x,X.,a) = 0, where the unknown is the couple (x,X) and

* is a locally Lipschitzian mapping. Then we shall get (x,A) as a

function of the parameter a through an implicit function theorem

for Lipschitzian mappings which we recall hereafter.

We first recall some definitions. Following Clarke [1975],

let be a mapping from an open subset N of 3R to In and

let y be an element in N. We define the generalized derivative of

*4 at y in N denoted 3*(y), to be the convex hull of the set of

matrices M of the form M - lim Do( ), where y is a sequence

in N converging to y and * is differentiable at yj, with derivative

D#(y ). If * is locally Lipschitzian, then, by Rademacher's theorem,

" is differentiable almost everywhere, and one easily shows that the

set a a(j) is nonempty, convex, and compact. It coincides with the

derivative D0(y), whenever * is continuously differentiable on a

neighborhood of y.



-8-

Now let 4 be a Lipschitzian mapping from an open subset of

Rn X IR to IRn . We6define the generalized partial derivative of o

with respect to the first variable at the point (y,), denoted by

a as the convex hull of the set of matrices M of the form

M = lim D 4(y ,j), where {yJ), {aJ} are sequences in IRn  and
.1 y

converging to y and a respectively, 0 is differentiable at (y ,cj )

and D y(yJ,OJ ) denotes the usual partial Jacobian matrix with respect

to the first variable y.

We now state the implicit function theorem for Lipschitzian

mappings due to Clarke [1976] (see also Hiriart-Urruty [1978]).

Theorem 3.1: Let E, F be finite dimensional real vector spaces,

let a be an open subset of E x F and let * be a Lipschitzian

mapping from a to E. We suppose that, at a point (y,a) in fa, the

generalized partial derivative a *(y4,) has maximal rank (in the sense

that every matrix in a *(y,4j) has maximal rank) and that 0(y,) = O.

Then, there exist open neighborhoods U of y, V of and a

Lipschitzian mapping f from V to U, such that:

(ii) for all a in V, f(a) is the unique element in

U satisfying .(f( ),u) -.

Before proceeding to the proof of Theorem 2.1, we need some

further definitions, as well as two lemmas. Let C be a nonempty

closed convex subset of 2? and p an element of 2?. We denote by

-d
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w l(p) the projection of p on C. We recall that (p) is uniquely

defined by one of the two equivalent assertions:

(3.2) w(p) EC and IIir(p) -pJ < .I Iw(p) - ql for all q in C;

(3.3) w(p) EC and <r(p)- p, w(p)- q>< 0 for all q in C

Furthermore, the mapping p -) 'ir(p), from M to J? is

Lipschitzian of constant 1 (i.e., for all p, q in IRm,

7r (p) - 7(q)ll t lip - qil, see for example, Rockafellar [1970]).

Lemma 3.4: Let C be a nonempty, closed, convex subset of

R, w: IR -* 3R the projection mapping on C. Then, for every p

in 2P , and every h in 3P .

i) <Ah, h - Ah> > 0 for every A in 9v(p) ;

(ii) <p - w(p), Ah> = 0 for every A in aw(p)

Proof:

i) By (3.3), for all p, q in ,m <p - w(p), w(q) - w(p)> < 0

and <q - w(q), w(p) - w(q)> < 0. Summing up the two inequalities,

taking q = p + th, for t > 0, in in F ,dividing by t2 , ve get:

(35) < 7(p + ,h -w(p) Sh> > WI(P + t -T(p) I 1
t -t

Let A in 3w(p). From the definition of 3w(p), there exist
iI

veights W >0 , i -l,...,I, = 1 and (m xm) matrices Aii=l I

i l,...,I in aw(p) such that A = .WiAi and the Ai satisfy

the following property. For all i, there exists a sequence {plj} in
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UP converging to p, such that the derivative Dn(p i j) exists and

i D (pij ij
A li urn Dr~p. Using (3.5) with p = ,when t 0 0, j + , we

get at the limit, for all i = 1,..

<Aih,h>> 1 ihl1 2  •

Using the fact that the mapping p 1 HpH12  is convex, we get:

2 I
IlAhIl - <Ah,h> < I W2(tAihjj 2 = <Aihh>) < 0

~i=l

(ii) From (3.3), taking q = w(p + th), h in im t # 0,

dividing by t, we get:

<p = n(p) 7(p + th) -7(p) > < 0 if t > 0"" t

<p - 'T(p), '(P+th) > >0 if t < 0t -

Thus, at a point p in Fm where ir is differentiable, when

t 0 0 at the limit in the two above inequalities, we get:

<p - 7(p), D(p)h> = 0

m
Now let p be an arbitrary point in JR and let A be in 3w(p).

Using the definition of ai(p), as in the proof of the first part of the

lemma, we get <p - ir(p), Ah> = 0. This ends the proof of Lema 3.4.

Remark 3.5: When C = {0}ml X R+2 with m + m = m, it is easy

to compute a(p) for all p in IIm . Let Ai be the element of row

i and column j of a m x m matrix . Then A belongs to Dw(p)

if and only if:



i =0 for all i J.i!

Ai =0 for 1 1 l M

Aii i if Pi > 0

0 <Aii :_ 1 if Pi = 0 for i m3 + m2

A =0 if Pi < 0

Lemma 3.6: Let C be a nonempty, closed, convex subset of

let 7r: Rm  f be the projection mapping on C, let p be

an element in C and A be in nP. Then the following assertions

are equivalent:

(i) X E N(C,p), i.e., <X,p> > <X,q> for all q in C

(ii) there exists v in 2P such that p = ir() and

Proof: (i)+*(ii). Let X E N(C,p) anad vi X + p. It suffices

to show that p = w(u). Since X belongs to N(C,p), for all q in

C, <u - p, q - p> < 0. By(3.3), we deduce p - w(u). (ii)-*(i): Let

Vj in JRm  with p = r(u) and A = u - (u). By (3.3), for all q

in C, <~j(i) - lj,w(p) - q> < 0. Therefore, for all q in C,

<A,p> > <),q> and A belongs to N(C,p).

This completes the proof of Lemma 3.6.

In order to prove Theorem 2.1, we modify the necessary conditions

(1.2) by introducing an auxiliary variable I.

4
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Let (x,X) be in U x Bps a in V. From Lemma 3.6, (x,X)

satisfies the first order condition (1.2) at a:

m

Df(xoL) + X XiDgi(x,a) = 0

(1.2)

LX E N(C,g(x,ot))

if and only if there exists u in UP such that (x,X,j) satisfies

the system of equations:

m

Df(x, ,) + [ X.Dgi(xa) 0 0i=l

(3.7) g(x,t) - ir(u) = 0

," g(x,CL) + X 0.

Let y = (x,A,P). We denote by *(y,a) the left-hand side of

the system (3.7). * is a mapping from an open subset of J+R x JE

into IR k+ 2m . Since the projection mapping w on C is Lipschitzian,

* is locally Lipschitzian.

Proof of Theorem 2.1: Let P - + g(1,3), and y -

By Clarke's implicit function theorem (Theorem 3.1), it suffices to

prove that the generalized partial derivative B y(yc) is of maximal rank.

Let A be an arbitrary element in w(;). Then a *(y,1 )

is made up of the matrices of the following form:

C.-• *' " , .. - , ,0 -i..m l . I i ' "" ' " ' ' " " ' , - - ..
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2 2-T
D r(ixg) + X )iD gi(iuIO) Dg(x,m) 0

XDg(G,;) 0,
Dg(i,;) z-

where Dg(x,) denotes the m x k matrix of rows Dgi(x, i), i =

Dg(xi)T  its transpose, and I the (m x n) identity matrix.

To show that M is of full rank, let there be vectors a in

3Rk , b and c in UP such that:

a

(3.8) L =0

It suffices to show that a 0 and b c 0.

Replacing M by its value in (3.8), we get:

(Df(;,;) + )iD g (x,ct)a + Dgi.T'
iml

(3.9) D(gU)a - Ac = 0

Dg(;,;)a + b c 0

Premultiplying the first equation by a , using the other ones

and Lema 3.4 (1), we get:
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a TD f(, + A D 2Dg (xa) ]a -a T Dg(x,)Th
i=l

= -bTAc

-(c - Ac)TAc < 0

On the other band, using the first order condition (2.2) and

the above equations, we get:

-T -T
x. -A Dg(xc)a -A Ac

Since = - w( ) and A belongs to aw(j), by Lemma (3.4)

(ii), we obtain:

(3.10) Df(i,;)a 0

By Assumption (A.3) of Theorem 2.1, we get a 0. The first

line of (3.9) implies then Dg(x,)Tb = 0. Since by Assumption (A.2)

the vectors Dgi(x,ct), i 1,...,m are independent, we have b 0.

Thus, c = 0. This ends the proof of Theorem 2.1.

Proof of Theorem 2.2: It follows the same line as that of Theorem

2.1. First note that we can ignore the constraints i in (mi +

" such that gic) > 0. In fact, the continuity of the solution x(a)

which we are looking for implies that these constraints will stay

unbinding. The only difference lies then in the study of system (3.9)

where Remark 3.5 and Assumption (A.3 bis) are used.

In fact, the second line in (3.9), using Remark 3.5, leads to:

D gi(:,&}a_ . 0 for i
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Furtheraore, consider an i in (m + l,...,a} such that

gi  ,) = 0 and i x 0. Then by (3.7), U i < 0. Thus by Remark 3.5,

Aii 0, therefore:

Dgj~sQ-)a - 0

Consequently, in the proof of Theorem 2.1, we can replace (3.10)

by:

i(i, )a = 0 for i - is...,

(3.31)

-(, 0 o for all i in {m_ +

such that g = 0 .

By Assumption (A.3 bis), we get a - 0. The rest of the proof

is unchanged. This ends the proof of Theorem 2.2.

Proof of Corollary 2.3: By Robinson [1980], under Assumption

(A.2), the system of equations (1.2) (respectively (1.3)) is a

necessary condition for the solution of (1.1). Let x(.): V1 .bU1

be the mapping defined in Theorem 2.1 (respectively 2.2). Then, for

all a in V1 , x(a) is the only candidate for a local minimum on

U1 , fbr problem (1.1).

To show that it corresponds in fact to a local =inimm, we have

to check that the sufficient conditions (A.3) (respectively (A.3 bus))

are satisfied in an open neighborhood of (x,) (dee Robinson (1980]

for a proof that (A.3) and (A.3 big) are indeed sufficient conditions).

.
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We prove it for (A.3), leaving the other similar case to the

reader. Suppose on the contrary that for a sequence {(x4,a4)}

converging to (2,;), (A.3) is violated at (xJ,aj ,(a4 )). There

exists h4 in IRk, 1lhJ1 = 1 such that <Df(x4'cz),hJ> = 0 and

<(D f 'CJJ) + A i(a )D gi(xj))hj,h > < 0 where X(a) is the

Lipschitzian function defined in Theorem 2.1. Since the Ii stay

*. in a compact, there exists a converging subsequence towards h. From

the continuity assumptions, we have <Df(x,c),h> = 0 and

2 ~m 2

<(D2 f(x,' ) + I X i()D gi (  < 0

Hence this contradicts Assumption (A.3). This ends the proof of

Corollary 2.3.

. -
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